Linear regression under log-concave and Gaussian scale mixture errors: comparative study
نویسندگان
چکیده
منابع مشابه
Functional Inequalities for Gaussian and Log-Concave Probability Measures
We give three proofs of a functional inequality for the standard Gaussian measure originally due to William Beckner. The first uses the central limit theorem and a tensorial property of the inequality. The second uses the Ornstein-Uhlenbeck semigroup, and the third uses the heat semigroup. These latter two proofs yield a more general inequality than the one Beckner originally proved. We then ge...
متن کاملA recurrent log-linearized Gaussian mixture network
Context in time series is one of the most useful and interesting characteristics for machine learning. In some cases, the dynamic characteristic would be the only basis for achieving a possible classification. A novel neural network, which is named "a recurrent log-linearized Gaussian mixture network (R-LLGMN)," is proposed in this paper for classification of time series. The structure of this ...
متن کاملActive and passive learning of linear separators under log-concave distributions
We provide new results concerning label efficient, polynomial time, passive and active learning of linear separators. We prove that active learning provides an exponential improvement over PAC (passive) learning of homogeneous linear separators under nearly log-concave distributions. Building on this, we provide a computationally efficient PAC algorithm with optimal (up to a constant factor) sa...
متن کاملDiagnostic Measures in Ridge Regression Model with AR(1) Errors under the Stochastic Linear Restrictions
Outliers and influential observations have important effects on the regression analysis. The goal of this paper is to extend the mean-shift model for detecting outliers in case of ridge regression model in the presence of stochastic linear restrictions when the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of measures for diagnosing influential observations are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2018
ISSN: 2383-4757
DOI: 10.29220/csam.2018.25.6.633